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KNOWLEDGE ENGINEERING LAB (CSE 4.1.7) 

 

3. Introduction to regression using R. 

Air Velocity (cm/sec) 20,60,100,140,180,220,260,300,340,380 

Evaporation  Coefficient(mm2/sec) 0.18, 0.37, 0.35, 0.78, 0.56, 0.75, 1.18, 1.36, 1.17, 1.65 

 

Use R to perform linear regression on the given the data. Analyze the significance of residual 

standard-error value, R-squared value, F-statistic. Find the correlation coefficient for this 

data and analyze the significance of the correlation value. 

Introduction to Linear Regression 

Linear regression is one of the most commonly used predictive modelling techniques. The 

aim of linear regression is to find a mathematical equation for a continuous response 

variable Y as a function of one or more X variable(s). So tha t you can use this regression 

model to predict the Y when only the X is known. It is expressed in the equation 1.  

𝑌 = 𝛽1 + 𝛽2𝑋 + 𝜖 (1) 

Where 𝛽1 is intercept, and 𝛽2 is slope, and 𝜖 is the error term. 

 

Problem Specification 

In the given problem ‘Air velocity’, and ‘Evaporation Coefficient’ are the variables with 10 

observations. 
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The goal here is to establish a mathematical equation for ‘Evaporation Coefficient’ as a function 

of ‘Air velocity’, so you can use it to predict ‘Evaporation Coefficient’ when only the ‘Air velocity’ 

of the car is known. So, it is desirable to build a linear regression model with the response variable 

as ‘Evaporation Coefficient’ and the predictor as ‘Air velocity’. Before we begin building the 

regression model, it is a good practice to analyse and understand the variables. 

> airvelocity<-c(20,60,100,140,180,220,260,300,340,380) 
> evaporationcoefficient<-c(0.18, 0.37, 0.35, 0.78, 0.56, 0.75, 1.18, 1.36, 1
.17, 1.65) 
> airvelocity 
 [1]  20  60 100 140 180 220 260 300 340 380 
> evaporationcoefficient 
 [1] 0.18 0.37 0.35 0.78 0.56 0.75 1.18 1.36 1.17 1.65 

 

Graphical analysis 

The aim of this exercise is to build a simple regression model that you can use to predict 

‘Evaporation Coefficient’. But before jumping in to the syntax, let’s try to understand these 

variables graphically. 

Typically, for each of the predictors, the following plots help visualize the patterns: 

Using Scatter Plot to Visualize the Relationship 

Scatter plots can help visualize linear relationships between the response and predictor variables. 

Ideally, if you have many predictor variables, a scatter plot is drawn for each one of them against 

the response, along with the line of best fit as seen below. 

> scatter.smooth(airvelocity, evaporationcoefficient, main="Airvelocity ~ Eva

poration Coefficient") 
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The scatter plot along with the smoothing line above suggests a linear and positive relationship 

between the ‘Air Velocity’ and ‘Evaporation Coefficient’. 

This is a good thing. Because, one of the underlying assumptions of linear regression is, the 

relationship between the response and predictor variables is linear and additive. 

Using BoxPlot to Check for Outliers 

Generally, an outlier is any datapoint that lies outside the 1.5 * inter quartile range (IQR). 

IQR is calculated as the distance between the 25 th percentile and 75th percentile values for 

that variable (1). 

> par(mfrow=c(1, 2)) 

> boxplot(airvelocity, main="Airvelocity", sub=paste("Outlier rows: ", boxplo

t.stats(airvelocity)$out))  # box plot for 'speed' 

> boxplot(evaporationcoefficient, main="Distance", sub=paste("Outlier rows: "

, boxplot.stats(evaporationcoefficient)$out))  # box plot for 'distance' 
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There are no outliers in the given data. 

Using density plot to check if response variable is close to normal 

Density Plot visualizes the distribution of data over a continuous interval or time period. This cha

rt is a variation of a Histogram that uses kernel smoothing to plot values, allowing for smoother d

istributions by smoothing out the noise. The peaks of a Density Plot help display where values ar

e concentrated over the interval. 

Skewness is the degree to which returns are asymmetric around the mean. Since a normal distrib

ution is symmetric around the mean, skewness can be taken as one measure of how returns are n

ot distributed normally. Left-skewed distributions are also called negatively-skewed distributions

. That’s because there is a long tail in the negative direction on the number line. The mean is also 

to the left of the peak. Right-skewed distributions are also called positive-skew distributions. Tha

t’s because there is a long tail in the positive direction on the number line. The mean is also to th

e right of the peak. 
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> install.packages("e1071") 

> par(mfrow=c(1, 2)) 

> plot(density(airvelocity), main="Density Plot: Airvelocity", ylab="Evaporat

ion Coefficient", sub=paste("Skewness:", round(e1071::skewness(airvelocity), 

2)))  # density plot for 'Air Velocity' 

> polygon(density(airvelocity), col="blue") 

> plot(density(evaporationcoefficient), main="Density Plot: Evaporation Coeff

icient", ylab="evaporation coefficient", sub=paste("Skewness:", round(e1071::

skewness(evaporationcoefficient), 2)))  # density plot for 'dist' 

> polygon(density(evaporationcoefficient), col="blue") 

 

Correlation value and it’s analysis 

Correlation analysis studies the strength of relationship between two continuous variables. It 

involves computing the correlation coefficient between the two variables. Correlation is a 

statistical measure that shows the degree of linear dependence between two variables. In order to 

compute correlation, the two variables must occur in pairs, just like what we have here with ‘Air 

velocity’ and ‘Evaporation Coefficient’. Correlation can take values between -1 to +1. 

> cor(airvelocity, evaporationcoefficient) 
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[1] 0.9514814 

Building the Linear Regression Model 

The function used for building linear models is lm() 

> linearMod <- lm(evaporationcoefficient ~ airvelocity) 

> print(linearMod) 

 

Call: 

lm(formula = evaporationcoefficient ~ airvelocity) 

Coefficients: 

(Intercept)  airvelocity   

   0.069242     0.003829  

The results show the intercept and the beta coefficient for Evaporation Coefficient. 

From the output above: 

• The estimated regression line equation can be written as follow:  

𝐸𝑣𝑎𝑝𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =  0.069242 +  0.003829 ∗ 𝐴𝑖𝑟 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 

• The intercept (𝛽1) is 0.069242. It can be interpreted as the predicted Evaporation 

coefficient at zero Air velocity. 

• The regression beta coefficient for the variable Air velocity (𝛽1), also known as the 

slope, is 0.048. 

Model Assessment 

Before using this formula to predict Evaporation coefficient, we should make sure that this model 

is statistically significant. 

We start by displaying the statistical summary of the model using the R function summary(): 

> summary(linearMod) 

 

Call: 

lm(formula = evaporationcoefficient ~ airvelocity) 

 

Residuals: 

     Min       1Q   Median       3Q      Max  

-0.20103 -0.14671  0.05261  0.12318  0.17473  

 

Coefficients: 
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             Estimate Std. Error t value Pr(>|t|)     

(Intercept) 0.0692424  0.1009737   0.686    0.512     

airvelocity 0.0038288  0.0004378   8.746 2.29e-05 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 0.1591 on 8 degrees of freedom 

Multiple R-squared:  0.9053, Adjusted R-squared:  0.8935  

F-statistic: 76.49 on 1 and 8 DF,  p-value: 2.286e-05 

The summary outputs show 6 components, including: 

 

Call  

Shows the function call used to compute the regression model. 

Residuals 

Normally it gives a basic idea about difference between the observed value of the dependent 

variable (Y) and the predicted value (X), it gives specific detail i.e. minimum, first quarter, median, 

third quarter and max value, normally it does not used in our analysis. 

Coefficients 

The coefficients table, in the model statistical summary, shows: 

• The estimates of the beta coefficients 

• The standard errors (SE), which defines the accuracy of beta coefficients. For a given beta 

coefficient, the SE reflects how the coefficient varies under repeated sampling. It can be used 

to compute the confidence intervals and the t-statistic (2). 

We have standard error 0.1009737, 0.0004378 for 𝛽1 and 𝛽2 respectively that are close to o 

• The t-value is calculated by taking the coefficient divided by the Std. Error.  It is then used to 

test whether or not the coefficient is significantly different from zero.  If it isn’t significant, 

then the coefficient really isn’t adding anything to the model and could be dropped or 

investigated further.  Pr(>|t|) is the significance level. 

We have p value as 2.286e-05 the predefined statistical significance value is 0.05 
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Residual standard error 

The RSE is an estimate of the standard deviation of 𝜖. Roughly speaking, it is the average amount 

that the response will deviate from the true regression line (3). It is computed by 

𝑅𝑆𝐸 = √
1

𝑛 − 2
∑(𝑦𝑖 − 𝑦�̂�)2

𝑛

𝑖=1

 

R-squared value 

The 𝑅2 statistic provides an alternative measure of fit. It represents the proportion of variance 

explained and so it always takes on a value between 0 and 1, and is independent of the scale of 𝑌. 

𝑅2 is simply a function of residual sum of squares (RSS) and total sum of squares (TSS): 

𝑅2 = 1 −
𝑅𝑆𝑆

𝑇𝑆𝑆
= 1 −

∑ (𝑦𝑖 − 𝑦�̂�)
2𝑛

𝑖=1

∑ (𝑦𝑖 − 𝑦�̂�)2𝑛
𝑖=1

 

Plotting Regression 

Now, we plot out prediction results with the help of the plot() function. This function takes 

parameter x and y as an input vector and many more arguments.(4) 

> png(file ="linear_regression.png") 

> plot(evaporationcoefficient,airvelocity, col = "red",main = "Regression Plo

t",abline(lm(airvelocity ~ evaporationcoefficient)),cex = 1.3,pch = 16,xlab = 

"Air Velocity",ylab = "Evaporation Coefficient")   

> dev.off() 
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